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1. Consider a homogeneous medium at rest occupying the lower half-space 
in Flg.1. We introduce a rectangular system of Lagrangean coordinates 3xyz 
and consider the stress and small-strain tensors 

xx x, x, e Kc I/Z sry 'Ia sJcz 

y.x y, y, % syr 

x, I', z, ) 

'12 axr, %Y 
?Js srr "12 E,, e zz 

with first invariants 

P = ‘I, cx, + yg e .qh 

and second invariants 

respectively. 

Suppose that the medium in question can be described by a model of a non- 
linearly elastic body with the properties 

P = cp (s), D,==6QD, ) T = f (0, 
f m 

Q @‘I = -g- 

In these formulas D and Be 
and J+(P) are known fun&ions. 

are the stress and strain deviators (P(E) 

Suppose that at the initial moment of time t = 0 all particles lying on 
the surface of the medium (X = 0) are given one and the same velocity 
vetv,, v,, C),which then remains constant (Flg.l), where _VgJ >,C. Plane 
uniform motlon.takes place within the medium, so that all parameters of 
motion depend only on 3: and t . We introduce a particle-velocity vector 
V ~~~,~~,O) and a particle-displacement vector U'(u, v,C). I% virtue of sy'm- 
metry of the problem, we have 
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Fig. 1 
Hence 

-% - 'P (8) = 44 (r) e, X fl= 34 (r) exy (1.3) 

Since Vx= au/at and VW= au /at, we obtain from (1.1) that 

av, ae av, %y -=- 
ax at ’ 

-=- 
ax at (1.4) 

The equations of motion are of the form [I] 

av, ax, 
POT==7 

av, ax, -=- 
PO at a2 (1.5) 

where p,, is the density of the medium at rest. Equations (1.2) to (1.5) 
form a closed system which must be solved for the conditions 

v, = Q"9 VU =vm for x = 0, (1.6) 
v, = 0, v* = 0, e-0, exv=O for z = 00 (1.7) 

Making use of (1.3) and eliminating x, and U, from (1.5), we obtain 

avx ae av, ae ae xv 

at -azi --bxx-cirx-_O at 
Here 

a=~($+4QU’)+~,$), 
I 3=, dQ b=--- 
PO r dr 

9 exy2 dQ -- 3Q(r)+d r dr ) 

(1.8) 

(1.9) 

It can easily be seen that the characteristics of the system (1.4), (1.8) 
may be found from Equation 

(dx / dt)a = 1/Z [a i- c + v(a - c)* i- 4B21 

For the existence of four families of characteristics we have the condi- 
tion a + c > v(a - c)% + 4ba,or 

3exva Q' 
Q+--F #+JQ(Q+ Q')>O (1.10) 

Since (P(E) and Q(r) are In essence independent functions, It follows 
that the inequality 0 + l-Q'> 0 Is necessary If (1.10) is to ‘iold. It can 
be shown that it would also be a sufficient condition for (l.lO), if cp'> 0 
(which Is natural). 
always holds. 

We make the. assumption that the inequality 0 + rQ'> 0 
It is easily seen that a necessary and sufficient condition 

for this Inequality to hold Is that the function T(r) increases monotonl- 
tally. 

With these assumptions the system has four families of characteristics 

=f 
a + c + v(a - c)2+4ba a+c-_(a-c)*+4ba 

2 9 2 (1.11) 

It will be noted that in the case of pure compression (or expansion) wlth- 
out shear (V,= 0, E,, s 0) the system (1.4), (1.8) has two families of 
characteristics given by the formula for (ax/&&),. In case of pure shear 
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cV,= 0, s G 0) this system has two families of characteristics given by the 
formula for (dx / a&. 

For this reason we shall call the characteristics (d~/dt), and (j~/dt), 
compression and shear characteristics, resDectlvelu. It can easllv be shown 
that 

2. In view of the self-slmllarit?f of the problem under discussion we con- 
clude that the parameters V,, VU, e. eW, X,and Xv 
able 5 = x / t. In this case the system (1.4), (1.8) 

depend only on the varl- 
Is easily reduced to 

the form -_ 

at 

de de, 
(E2 - 4 z = b x , 

dee, de 
(&c)--g-=b- dt 

Conditione (1.6) and (1.7) become 

v, = VX”’ vv = vm for E=O 

(2.1) 

(2.2) 

v,= 0, vv = 0, e = 0, e 
.ql = 

0 for E = 00 

The motion in a pure-compression (or expansion) wave adjacent to the zone 
rest Is described by equations obtained from (2.1) with V,r 0, erg ES 0 

g+ts =o, (p _u,,~‘$= 0 a, = so(e) = ~[~‘+4Q(IeI)Q’(ieI)I) 

(2.3) 
The general solution to the system (2.3) defines a constant flow 

V, = V,, = const, e = e, = const 

the zone of which Is separated from the zone at rest by a compression (or 
expansion) shock-wave. Taklnn into account (1.3). we can write the conditions 
on-the shbck-wave [l] In the Term 

_ _.- 

v,, + De, = 0, pouY,l =- - (Xx, - Xx,) 

X.y* = cp (O), X a = CF (~1) -!- 4Q (I ~1 I) ~1 (2.4, 

Here D Is the (constant) velocity af the shock-wave, the parameters In 
the zone of constant flow behind the shock-wave being denoted 
The particular solution to ,the system (2.3) (a centered wave) 

by the suffix 1 
iS 

t 

If for compressive (or -tensile) deformations &a,,/dlolc 0, then a centered 
compression [or.ectpanslon) wave will propagate ttiro h the undisturbed medium. 
If however arr,/dlo I> 0, a compression (or expansion shock-wave will travel u7 
In front. If flo E const , a compression (or expansion) shock-wave travels In 
front also. For simplicity we shall not consider cases when &,/dlo 1 changes 
sign. 

Consider now a chear-compression (or e 
“p 

anslon) 
a region of pure compression (or expansion . 

wave propagating through 

system (2.1) defines the constant flow 
The general’ solution to the 

The region of constant flow accompanied by shear can be separated by a 
shock-wave frem the .nagl.Dn r,, = 0, V, = 0. We can wrfie down the conditions 



on this shock-wave, denoting the parameters In front of and behind the wave, 
respectively, by the suffixes 1 and 2 (by,., = I',, , I’,, z i’v’v,)+ Suppose that 
the wave velocity relative to fixed space 1s - b and the equation of the 
wave Is 

we 

2 = p* = c:t 

Then from the relations 
t 

s 
bdt =-L z* f u1 (x*, t), E = $ - I, 112 (2*, I) = If1 (LX*, t), 2’.: (x*, t) 0 

0 
can easily obtain 

(b - V,,) PI== P&, I',,, .~- - Ce,,,, ':U, ) J- cc, = rv, -1 (,‘e* P 5) _, 

and the relations [l] 

Pl(b - VX1) V, = - X,,*, p1 (b - i’.yI )(Vro - lrsl ) = - (P,, - -&) 

assume the form 

P&V,, = - x,, P"C (V,c - I'.,\l) ==- - (X,, - '&) (2.6) 

Conditions (2.5) and (2.6) must be supplemented by Equations (1.3) 
--- 

X,.? = C (sa) + 4~24 Oh), %2 = 3e,y,,Q F,), I‘, = j&2 -I- s/* E?y{~~ (2.7) 

For the shear-compression (expansion) shock-wave to be stable It Is essen- 
tial 123 for Its velocity to be not less than the velocity of small shear 
perturbations ahead of the wave and not greater than the velocity of small 
shear and compression perturbations behind the wave. Simple computations 
show that the shock-wave will be stable If the Inequality 

holds. 

Q’ V,) > 0 (2.8) 

Consider now the particular solution of the system (2.1). Multiply1 
together the last two of Equations (2.1) and cancellly the product 
(dc,,/d<), assumed to be no-zero, we obtain (<"- a)({ - c) = ba. 

(do i" d5) 

From this we have that either 

or 

5 = [I/* (n + c -!- VG - c)" + 4b2)jl’2 (2.9) 

E = it:* (a f c - V(rc - c)' + 46")J'i' ('.1U) 

letn.. Indeed, a comparison of (2.9 and 1.11 shows that fbr the advancing 
It cs easily be shown that (2.7) can?ut p$vWa a anltilon to the prob- 

I.e. In the zone of solution (t:'$j ;it?&- 
compression characteristics 

acterlstlcs (2.9) are (In the xi-plane) rays 
emanating from the origin of coordinates. 
Consequently, the rag, mspctaatlng the regions 
of pure compression and shear-compression In 
the xt-plane Is a compression characteristic. 
But this means that the front of the shear- 
compression shock-wave leaves behind the 
waves of small shear perturbations orlgln- 
atlng from the surface of the medium, since 

This Is not possible. 
a Cdnsequently the particular solution Is 

given by Formula (2.10) together with the 
first three of equations (2.1). The same 
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particular solution (2.9) corresponds to a leading pure compression wave. 
By analogous reasoning we conclude that In the zone of the particular solu- 
tion the shear characteristics are rectilinear rays In the Jet-plane. For 
this reason this solution is called a centered shear-wave. Ahead of the 
centered shear-wave there must be a region of constant flow, since the pro- 
ximity of centered compression and shear waves requires the shear and com- 
pression characteristics to coincide on their boundary, which Is n& possl- 
ble. 

3. It follows from the above that the form of the solution depends on 
the form of the functions cc (E) and g(r) . ?f we do not consider the 
cases when (I” =- const, Q z const in view of their simplicity, then In all 
there can be four variants of the ensuing motion. We shall now consider 
these, assuming, In order to be specific, that VXO> 0 (compression): 

Variant’1 

dn, : d I E I > 0, rlQidI’>O 

A pure compression shock-wave propagates throughout the undisturbed medium; 
behind this wave there is a zone of constant flow, through which a compres- 
slon-shear shock-wave travels [7 and 83. Between the second shock wave and 
the surface of the medium there is a zone of constant flow. The motion pat- 
tern in the xt-plane is shown In Fig.2. 

The solution Is of the form 

s 2: 0, s = 0, 
121 

v, -= 0, vv --z 0, for 5 > ot 

E == El, E._, =: 0, v, = VII, vu = 0, for nt > x > CL (3.1) 

E--z, E. .\ g == E.Y\rl, l’X =; IT,” ( 17, := v,, for Ct > z > 0 

Here c-,,, and v-,,, are known quantities. In order to determine the con- 
stants ~1, G, sxy2. vi, , D, and C we have the system of equations (2.4) to 
(2.7). The above solution ma be used for the experimental determination of 
the functions (P(E) and Q(r 3 . From (2.4) to (2.7) we easily obtain 

We see from 
ing shock-wave 

Formulas (3.2) that by measuring the velocity D of the lead- 
and the fcur quantities (V,,, Vu,,, Xx2, X,), on the surface 
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of the medium we can establish experimentally the functions P(E) and Q(r). 
To do so it is necessary to vary II,, and If,,. 

Variant 2 

dab/&<& dQ Idr>Q 

A centered pure-compression Wave propagates through the undisturbed medium; 
behind this wave there 1s a zone of constant flow, through Which a compressiOn- 
shear shock-wave travels. Between the shock-wave and the surface there i8 a 
zone of constant flow. This case has been studied in [61. fn the xt-l?laRe 
the motion pattern is as shown in F&.3. The solution may be written 

s= 0, sxy = 0, v, = 0, VW = 0 for 2 > V'h, t 

x/t= ~cz,(Lz), vz= --am, em =o, vu=07 for vD(ot t>/ x> mt 

e=e,, Vr=Vzl, Bxtr = 0, vs = 0 for mt > x > Ct (3.3) 

e = Eat vx = VXOT %y = $q/z, v, = V@ for Ct > x >, 0 

Here 

J&,0) = 5 I/D de (3.4) 
0 

In order to determine the constants a,, sat&*, Vxt, mand -C: we have the 
system of equations (2.5) to (2.7), to whiah we must add 

m= I/a,(e&, V,, = -J1(e3, Xx1: -a,(~3+~Q(lelh 

Variant 3 
daoIdlel>O, dQfdf<o 

A Poe-compression shock-wave propagates through the undisturbed medium, 
followed by a zone of constant flow. Then follows a oentered ah- Wave; 
between this wave and the surface there Is constant flow (Fig. 4). An @!XsiCt 
solution cannot be written since the equations of a centered shear-wave 
(2.10) and (2.1) cannot be integrated. One aFproxd.mate solution can easily 
be written if the impulse on the surface of the medium ie approximately 
vertical, i.e. if 

IVbyl /V,l@ 1 (3.4) 

Making the assumption that the order of rp’ fs higher thsn (or eCiti to) 
that of Q , and estimating the order of the terms in the equations of the 
shear-wave, we obtain the following approximate eolution to the problem 
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I" 
J3 6% %I = 

s 
@J /de -t- Q (I ell + 4lel Q’(lel) de 

Q’ (I E I) 
Et 

e 

s 
VG (I e I) 

J4 “’ el) = Ed Q’(j e I) ‘r/U3 (e, e,) 1% -I- Q(I e i) + 4 I 8 I Q’(I e I)) de 

(3.6) 

The constants % % sry2, V,.., D, I and 
(2.4), to which must be added the relations 

k can be found from Equations 

1 =Co V(lell), k = l/C&l Ez I), -J2(e2,4 =V3co, J4 tea, e,) = Vu0 

Variant 4 
ExY2 = - VW, (k, eJ (3.7) 

da,ldjeI<O, dQ/dr<G 

A centered pure-conpresslon wave propagates through the undisturbed PVXHUIZ, 

followed by a zone of constant flow, Then follows a centered shear-wave bet- 
ween which and the surface there 1s a zone of constant flow (Flg.5). The 
solution, when conditions (3.4) are satisfied; is of the form 

vx = 0, 'vu = 0 for z > l/a0 (0) t (2.8) 

e,, = 0, vu- 0 for v/a0 (0) t > x > mt 

e = cl, Vx = V,, , eslJ == 0, vu = 0 for mt > x > It 

x/t = vC,(JeI), V,= -JJ,k,el), Vu = J, (e, el) 

e xl/ = - 1/2J3 (e, el) for It > x > h-t 

e = E,, exy = exv2, V =[’ X0 I “q =-_ v,, for h-1 > 2 > 0 
The constants el* e2y Ed,, VX19 m, 

(3.6), together with the relations 
lXand ,$ can be found from Equations 

m=VaZT Vxl= - J, led (3.9) 
? 

4, We consider now the experimental 
determination of the functions CD(C) 
and Q(r). As has already been pointed 
out, It Is possible that a medium existi 
for which in the case of small deforna- 
tions da,, ! d 1 e 1 > 0, dQ 1 dl’ > 9. For 
such a medium formulas (3.2) canbc u-cd 
to derive experimental relations q(c) 
and g(r) by subjecting a medium (for 
example, soil) to an oblique Impact at 
the surface. However, although the 
limitation dc,/d Ic 1 > 0 will be satls- 
fied (for Instance, in exparlnents of 
pure compression a shock-wave Is fixed Fig. 5 
in a soil [3 and 4]), the assumption 
that dQ/ar > 0 Is open to dispute. So far no experiments have been car- 
ried out on materials, In particular In soils, In shear-conpresslon; thcre- 
fore the questlon of whether the shear-compression wave is a shoc!c-wave 
(4’ ) 0) or whether It Is continuous (4’~ 0) remains unanswered experinent- 
ally. Experimental curves drawn from Formulas (3.2) must tnerefore be veri- 
fled. This can be done by an experiment In pure compression (V, P 0). 

The solution for dn,/dl E ( > 0 ( a shock-wave in front followed by COnStant 

flow) In the case of pure compression Is of the form 
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If v,o Is given, then cl and D (the velocity of the shock-wave) can be 
found from Equations (2.4) in which we set v = Vxo . Remembering that in 
this case Y = 2, and therefore cp = $(xX + 2Yx\ we conclude that experimen- 
tal curves f&r (E) and Q(r) can be drawn l’f in an experiment of pure com- 
pression 
the surfac:‘:; ~~e”~o?3”“’ 

D and Y (U is the value of Y, at 
. TheV%ution of th’e pr:blem Is 

A second check on the accurac of the results obtained Is provided by a 
comparison of the relations ~(e Y, obtained In the manner Indicated from 
Formulas (3.2), with those obtainid by the well-known experiment on hydro- 
static compression described In [5]. 

If the function Q(r) obtained from Formulas (4.2) is found to decay 
(Q’< 0) then the solution (3.1) and Formulas (3.2) are not applicable to 
the cal&atlon of a shear-compression Impact. A check on the validity of 
experimental curves for (P(E) and Q(r) obtalned from (4.2) Is provided In 
this case by the solution to the problem of shear-compression Impact given 
by the formulas of variant 3 with experimentally determliled parameters (for 
example, the velocity D 
surface of the soil). The 

of the shock-wave, the stresses X , X, at the 
solution to the problem is then given on the 

basis of experimental functions rp(e) and Q(r) . 
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