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1. Consider a homogeneous medium at rest occupying the lower half-space
in Fig.l. We introduce a rectangular system of Lagrangean coordinates Oxyz
and conslder the stress and small-strain tensors

Xx Xy Xz Sxx a €y a €z
Y, Y, Y, , Y &y g,y Yrey
Xz ¥ z Zl 2 &y, a2 Eyz €2:
with first invariants
P=1(X,+7Y,+Z) e=1g, + &, +¢&,

and second invariants

T=1VIV X, — Y )+ (O, — 2P — X+ 6 (X} + X2+ YD)
= 1, Vi V(exx - aw)a + {8w"‘ £, 4 (8, — & )? + 3"1‘3(8351;2 t e + 8922)

respectively.

Suppose that the medium in gquestion can be described by a model of a non-
linearly elastic body with the propertles
f @)

P =), Dy,=6QD, , T=/{({), QM= Fr

In these formulas p,., and D, are the stress and strain deviators m(e)
and y(I') are known funftions.

Suppose that at the initial moment of time ¢ = O all particles lylng on
the surface of the medium {x = O) are given one and the same velocity
Vo (Vgr Vi 0}, which then remains constant (Fig.l), where V, > 0. Plane
uniform motlon takes place within the medium, so that all parameters of
motion depend only on x and ¢t . We introduce a particle-veloclty vector
V{¥,.V,0 anda particle-displacement vector U (u, v,0). By virtue of sym-
metry o the problem, we have
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Epy = B = By =8uz=0
du ov
# e =5 tw o .
z e e=e., I‘:Va_’ _*_a/‘axva (1.2)
Hence

Flg. 1 X, —9@E =4Q(Me, X,=3Q [De, (1.3)

Since V_=0u/dt and V, = dv [ 0t, we obtain from (1.1) that

v, ds
The equations of motion are of the form [1]
v, X, v, X,
Po 5 = Bz o5 = oz (1.5)

where p, 1s the density of the medium at rest. Equations (1.2) to (1.5)
form a closed system which must be solved for the conditions

Ve=Vyy V,=V, forz=0 (1.6)
Ve=0, V, =0, e=0, &,=0 for z=o00 1.7)
Making use of (1.3) and eliminating x, and ¥, from (1.5), we obtain
v, de aexu aVy de de xy
~E—_a-a—a’:_b-ﬁ—x—=0, —Bt—_b%_c o =0 (1.8)
Here
1 (de 4e? dQ 1 3ee,y, 40
c=ml@teem+FF), =5 7F
1 9 &xy’ dQ
— = = ZX 1.9
c_po<3Q(l‘)+4 Ty (1.9

1t can easily be seen that the characteristics of the system (1.4), (1.8)
may be found from Equation

(e /d? =1 la+c £V (@—of + a9

For the existence of four families of characteristics we have the condi-
tion a + ¢ >V (a — of + 4%, 0r
/ 3e..,2

<yt Q'
(QJF Ay >‘P'+4Q(Q+Q’)>0 (1.10)

Since ¢(e¢) and Q(I') are in essence independent functions, it follows
that the inequality @ + I'¢’> O 1is necessary if (1.10) 18 to uold. It can
be shown that it would also be a sufficlent condition for (1.10), if g’> O
(which is natural). We make the assumption that the inequality ¢ + r¢‘> 0
always holds. It 1s easily seen that a necessary and sufficient condition

for thie lnequality to hold 1s that the function T(I') increases monotoni-
cally.

With these assumptions the system has four families of characteristics
(dx)Z__ a4 c+4 Vie— o+ (d_x)2 a+c—Via—o + 4
It will be noted that in the case of pure compression (or expansion) with-

out shear (¥,= 0, ¢,, = 0) the system (1.4), (1.8) has two families of
characteristics given by the formula for (dx/3¢), . In case of pure shear

’
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(Vt =0, e=0) this system has two families of characteristics glven by the
formula for (dz / dt),.

For this reason we shall call the characteristles (dx/dt), and (4x/dt),
compression and shear characteristics, respectively. It can easily be shown

that
(@[> (&)
dl)l dt /o

2. In view of the self-similarity of the problem under discussion we con-
clude that the parameters V., V,, €. 2., X and X, depend only on the vari-
able £ ==z /t. 1In this case the system (1.4), (1.8) 1s easlly reduced to
the form

2 2

de dg dV'U dexy
P e Py o P 2.1)
de dexv daxv de
& —agE =7z € —o—7gr =bgr
Conditions (1.6) and (1.7) become
Ve ="V Vy=Vyp for £ =0 (2.2)
Ve=0, V,=0, e=0, gy =0 for E=o00
The motion in a pure-compression (or expansion) wave adjacent to the zone
at rest is described by equations obtained from (2.1) with Vys 0, e, = 0

vy

. d 1., ,
—dg+§%z—=0, (&’—ao);,%=0 (ao=ao(e):-p;[q> +4Q(|el)Q(!3(\2)132

The general solution to the system (2.3) defines a constant flow

vV, =V, = const, € = g, = const

the zone of which 1s separated from the zone at rest by a compression (or
expansion) shock-wave. Taking into account (1.3), we can write the conditions
on the shock-wave [1] in the form

Vi FDe =0, gDV = — (X — X,q)
Xy = 9 (0), Xy =9 (&) +4Q (e ))&y (2.4)

Here D 1s the (constant) velocity of the shock-wave, the parameters in
the zone of constant flow behind the shock-wave being denoted by the suffix 1
The particular solution to ‘the system {2.3) (a centered wave) is

E=Va, @) V= — S‘Vao (e) de

0

If for compressive (or tensile) deformations da,/d|e|< O, then a centered
compression Lorzespansion) wave will propagate through the undisturbed medium.
If however da,/d|e|> 0, a compression {or expansion) shock-wave will travel
in front. If g, = const , a compression (or expansion) shock-wave travels in
front also. For simplicity we shall not consider cases when dag,/d|e| changes
sign.

Consider now a chear-compression (or expansion) wave propagating through
a region of pure compression (or expansion). The general solution to the
system (2.1) defines the constant flow
Ve ==1,, = const, Vy = V,, = const, &= g, = const, Eyy = By T const
The region of constant flow accompanied by shear can be separated by a
shock-wave frem the region ¢, = O, V,= O. We can write down the conditions
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on this shock-wave, denoting the parameters in front of and behind the wave,
respectively, by the suffixes 1 and 2 (V,, =V, V,, =V, ). Suppose that
the wave veloclity relative to fixed space is »p and the equation of the
wave is

z = o* = Ct

Then from the relations
t

S bdt == x* 1+ u, (2%, 1), &= -%9—- 1, ug(e*, ) =y (a*,8), wvo(x*, 1) 0
we zan easily obtain
b —=Vadp=pC, Vy = —Cey, 1y -Cep=T, = Ce (2.5)
and the relations [1]
py (b — V.u) Vy0 ==X P b — V_ﬂ)(VX0 V) =- (X — Xx-:)
assume the form
PV = — Xy 00 Vg — Vo) = — (Ay — Ap) (2.6)

Conditions (2.5) and (2.6) must be supplemented by Equations (1.3)

Xy =C (8 +462Q (Ba), Xy =36, Q (Ty), To= ] g2 9 g2y, (2.7

For the shear-compression (expansion) shock-wave to be stable it 1s essen-
tial [2] for 1ts velocity to be not less than the velocity of small shear
perturbations ahead of the wave and not greater than the velocity of small
shear and compression perturbations behind the wave. Simple computations
show that the shock-wave wlll be stable 1f the 1lnequality.

Q' (T >0 (2.8)

holds.

Consider now the particular solution of the system (2.1). Multiplyi
together the last two of Equations (2.1) and cance111n§ the product (de?gg)
(de,, /d2), assumed to Be no-zero, we obtain (22— g)(g%-¢) = »?.

From thls we have that elther

E=[Yyla+ec+ Ve — oF + 4bh)]" (2.9)
o E=[Vola+c— V(e — P+ 4b2)jl/2 (2.10)

It can easlly be shown that (2.?) c ot 1de a solution to the prob-
lem.. Indeed, a comparison of (2.9 angn?l.ll shows that for the advancing
compression characteristics x/d =g rx/g,,
1.e. in the zone of solution (2.9) the char-
acteristics (2.9) are (in the xt-plane) rays
emanating from the origin of coordinates.
Consequently, the r&y separating the regions
of pure compression and shear-compression in
the xt-plane is a compression characteristic.
But this means that the front of the shear-
compression shock-wave leaves behind the
waves of small shear perturbations origin-
ating from the surface of the medium, since

()1>18)
dt ]y > \Ot /2
This is not possible.

Consequently the particular solution is
given by Formula (2.10) together with the
first three of equations (2.1). The same
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particular solution (2.9) corresponds to a leading pure compression wave.
By analogous reasoning we conclude that in the zone of the particular solu-
tion the shear characterlstics are rectilinear rays in the xt-plane. For
this reason this solution is called a centered shear-wave. Ahead of the
centered shear-wave there must be a region of constant flow, since the pro-
ximity of centered compression and shear waves requlres the shear and com-
pression characteristics to coincide on thelr boundary, which is nqt possi-
ble.

3. It follows from the above that the form of the solutlon depends on
the form of the functions a,(e) and @(r) . If we do not consider the
cases when a, = const, Q == const in view of thelr simplicity, then in all
there can be four variants of the ensuing motion. We shall now consider
these, assuming, in order to be specific, that V,,> O (compression):

Variant™ 1
dag !/ d|e| >0, dQ /dl' >0
A pure compression shock-wave propagates throughout the undisturbed medium;
behind this wave there is a zone of constant flow, through which a compres-
sion-shear shock-wave travels [7 and 8]. Between the second shock wave and

the surface of the medium there is a zone of constant flow. The motion pat-
tern in the xt-plane 1s shown 1n Fig.2.

The solution 1is of the form

g == 0, Eyy 7 0, vV, = 0, Vy —= 0, for x> Dt
e =81, By = 0, V, = Vxl’ Vy =0, for Dt>x>Clt 3.1)
£ = &, By = EA’U'}’ Vx == Vx()' Vy B Vy:) for Ct >z > 0

Here V., and VY, are known quantities. In order to determine the con-
stants €y, €1, &y, Vy» D, and C we have the system of equations (2.4) to
(2.7). The above solution may be used for the experimental determination of

the functions of¢) and Q(r) . From (2.4) to (2.7) we easily obtain

2 2
4 Xy 1 Xy 13 3

= — S - 22 b 3 2

¢ (82) - X.rz - 390 Vu;z) ‘2 Q (Fz) 3?0 Vug H FZ Vsl + /4 ExyZ
‘ (3.2)

7 - 2 2 . 7
Povu(z) - pot 1;(2) (Xpg — Xy 1 PoDVg) — X3V F Vi Vip (Xag — Xxo)
Fam Xy S Xy (PDV )y + )

We see from Formulas (3.2) that by measuring the velocity D of the lead-
ing shock-wave and the fcur quantities (V. , V,, Xyoo Xu‘z)’ on the surface
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of the medium we can establish experimentally the functions ofle) and ¢{(r)
To do so 1t 1s necessary to very ¥,, and V,, .

Variant 2
dag [ de < 0, dQ /dT >0

A centered pure-compression wave propagates through the uniisturbed medium;
behind this wave there i1s a zone of constant flow, through which a compression~
shear shock-wave travels, Between the shock-wave and the surface there is a
zone of gonstant flow. This case has been studied in [6], In the xt-plame
the motion pattern is as shown in Fig.3. The solution mey be written

e=0, e,=0, vV, =0, v, = for 2> Va, (0) ¢
slt=Va @, Ve=—J), e,=0 V,=0 forVa0)t>z>m
g == gy, Vx=Vx1, ey =0, Vy = for mt >z >Ct (3.3)
g = gg, Ve ="V By = S, V,=Vyp for Ct > >0
Here
Jy(e,0) = S Vo ® de 3.4)

1]

In order to determine the constants 8y, €3, 8., Vm_, mand  we have the
system of equations {2.5) to (2.7}, to which we must acad

m =V ag (&), Ve = —J1 (e, Xy =0 (&) + 4Q (jaaliey
Variant 3
dag/d|el >0, dQ /4T <0

A pure-compression shock-wave propagates through the undisturbed medium,
followed by a zone of constant flow. Then follows & centered shear wave;
between this wave and the surface there is constant flow (Fig. 4). An exact
solution cannot be written since the equations of & centered shear-wave
(2.10) and (2.1) cannot be integrated. One approximate solution can easily
be written if the impulse on the surface of the medium is approximately

vertical, i.e, if
IVW !le <€ 1 (3.4)

Making the assumpbion that the order of o’ is higher than {or equal to)
that of { , and estimating the order of the terms in the equations of the
shear-wave, we obtain the following approximate solution to the problem

e=0, g,=0 V=0 v,=0 for z > Dt {3.5)
v =g, exy=0, Vo=V, 1::““0 for Dt >z > Ut
s It=VEUED,  Ve=—la(e,e), & =— VT3 e
V,=Jsle, &) for it 2>kt
Ve = Vigs Vszyo for kt> x>0

€ == ¥y, € ©

xy = F

xy2?
€

Lot o) = VT8 + 7, Colle)

_3QQed _
2 Po ey =0
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I'e
d 1
Ja (e, ) = S ¢ /de + QQQ ':,DET; dlel Qe (3.6)

€

€

VCo(el)
QUe) V25, e

1

5+ ermpeanio
S FQUedt4lelQe))de

J4 (87 31) =
4

The constants %1, €3, 2y, V;1,1)11 and % can be found from E
t1
(2.4), to which must be added the relations n auations

=G, V(181|), k= Vco(|€2 0, — Jy (&g, &) = Vios Ja 8y, £81) = Vuo

€., = — V 275 (eg, £1) 3.7
Varliant & v e G0

day/d|e] <0, dQ/dT < ¢

A centered pure-compression wave propagates through the undisturbed medium,
followed by a zone of constant flow, Then follows a centered shear-wave bet-
ween which and the surface there is a zone of constant flow (Fig.5). The
solution, when conditions (3.4) are satisfied, 1s of the form

e=0, e, =0, V, =0 V, =0 for x> Vag, (0) ¢ (3.8)
z/t=Va, (@), V,= —Jy(e), axy=0, V=10 for Va0 t> x> mt
e=¢, V,=V,, &,=0 V,=0 for mt>z>Ult
2/t=VCo(el), V,=—Jsle, ), V,=J(,¢)
g =— V2, 8) for i>z>k
E=18, &y =8y, V=V, Vy=V, forkt>c>0

The constants &1 €2, 849, V., m, [ and % can be found from Equations
(3.6), together with the relations

m=Va @), Va=-—Ji(en 3.9

4, We consider now the experimental
determination of the functions ole)
and Q{r'). As has already been pointed
out, it 1s possible that a medium existe
for which in the case of small deforma-
tions dag/d|e| >0, dQ/dl' > 0. For
such a medium formulas (3.2) canbe uced
to derive experimental relations q{¢)
and Q(I') by subjecting a medium (for
example, soll) to an oblique impact at
the surface. However, although the
limitation dao/d|e| > O will be satls-
fled (for instance, in expariments of Fig. 5
pure compression a shock-wave 1s fixed g
in a soil {3 and 4]), the assumption
that d@/4T > O 1is open to dispute. So far no experiments have been car-
ried out on materials, 1n particular in soils, 1n shear-compression; there-
fore the question or whether the shear-compression wave 1s a shocli-wave
(¢’ > 0) or whether it is continuous (Q’< O) remains unanswered experiment-
ally. Experimental curves drawn from Formulas (3.2) must tnerefore be veri-
fied. This can be done by an experiment in pure compression (V,; 0).

The solution for gda,/dle|> 0 {a shock-wave in front followed by constant
flow) 1n the case of pure compression is of the form

e=0, V.=0, X =X, for r>D1 (.1

X N7

e=g, V.=V, X, =3, for Dt > a2 0
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If v,, is given, then ¢, and D (the velocity of the shock-wave) can be
found from Equations (2.4) in which we set Vv, = V,,. Remembering that in
thls case Y, =2, and therefore o = }(x,+ 2Y,5, we conclude that experimen-~
tal curves for (e¢) and ¢Q(r) can be drawn if in an experiment of pure com-
pression (V,E O? we measure V,,, D and Y, (Y, is the value of Y, at
the surface of the soil). The solution of the problem is

! XD

1 , i
& = — ¢ (g,) = T (Xyy+ 2Y, — po DV

XU)

1 Po DV — Xy 1 Y
Qe = & V

X0

A second check on the accuracy of the results obtained 1s provided by a
comparison of the relations w(€§: obtained in the manner indicated from
Formulas (3.2), with those obtained by the well-known experiment on hydro-
static compression described in [5].

If the function ¢(I') obtained from Formulas (4.2) is found to decay
(¢’< 0) , then the solution (3.1) and Formulas (3.2) are not applicable to
the calculation of a shear-compression impact. A check on the validity of
experimental curves for w(e) and @(I') obtained from (4.2) 1s provided in
this case by the solution to the problem of shear-compression lmpact given
by the formulas of variant 3 wlth experimentally determined parameters (for
example, the velocity D of the shock-wave, the stresses JX,, X, at the
surface of the soil). The solution to the problem is then given on the
basls of experimental functions o{e) and ¢@(T).
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